
Support of Multidimensional Parallelism in the OpenMP
Programming Model

Haoqiang Jin and Gabriele Jost*
NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000

e hjin, gjost @ nas. nasa.gov>

Abstract

OpenMP is the current standard for shared-memory programming. While providing ease
of parallel programming, the OpenMP programming model also has limitations which
often effect the scalability of applications. Examples for these limitations are work
distribution and point-to-point synchronization among threads. We propose extensions to
the OpenMP programming model which allow the user to easily distribute the work in
multiple dimensions and synchronize the workflow among the threads. The proposed
extensions include four new constructs and the associated runtime library. They do not
require changes to the source code and can be implemented based on the existing
OpenMP standard. We illustrate the concept in a prototype translator and test with
benchmark codes and a cloud modeling code.

1. Introduction

OpenMP [1 11 was introduced as an industrial standard for shared-memory programming with
directives. It has gained significant popularity and wide compiler support. The main advantage of
the OpenMP programming model is that it is easy to use and allows the incremental
parallelization of existing sequential codes.

OpenMP provides a fork-and-join execution model in which a program begins execution as a

single process or thread. This thread executes sequentially until a PARALLEL construct is found.
At this time, the thread creates a team of threads and it becomes its master thread. All threads
execute the statements lexically enclosed by the parallel construct. Work-sharing constructs (DO,
SECTIONS and SINGLE) are provided to divide the execution of the enclosed code region
among the members of a team. All threads are independent and may synchronize at the end of
each work-sharing construct or at specific points (specified by the BARRIER directive).
Exclusive execution mode is also possible through the definition of CRITICAL and ORDERED

regions. Thread synchronization of all threads is required at the end of PARALLEL constructs.

An existing code can be easily parallelized by placing OpenMP directives around time
consuming loops which do not contain data dependences, leaving the source code unchanged.

* Computer Sciences Corporation, MIS T27A-1, NASA Ames Research Center.

- 1 -

I The ease of programming is a big advantage over a parallelization based on data distribution and
message passhg, as it is required for distributed computer architectures. There are, however,
limitations to the programming model which can affect the scalability of OpenMP programs.
Comparative studies (i.e. [7]) have shown that high scalability in message passing based codes is
often due to user optimized work distribution and process synchronization. When eq loy ing
OpenMP the user does not have this level of control anymore. For example, a problem arises if
the outer loop in a loop nest does not contain a sufficient number of iterations to keep all of the
threads busy. In [l] and [5] it has been shown that directive nesting can be beneficial in these
cases. Even though the OpenMP standard allows the nesting of directives, this feature is not
supported by most of the commercial compilers. Another issue is the workflow between threads.
Data dependences may require point-to-point synchronization between individual threads. The
OpenMP standard requires barrier synchronization at the end of parallel regions which
potentially destroy the workflow, especially when nested parallel regions are used.

The SPMD programming model is a way to mimic the data distribution and workflow achieved
,by message passing programs. In this model the programmer expresses manually the data and
work distribution among the threads. The data is copied to small working arrays which are then
accessed locally by each thread. The work is distributed according to the distribution of the data.
The parallelization of the loop nests requires to compute explicitly which threads executes which
iteration. The bounds for each loop have to be calculated based on the number of threads and the
identifier of each thread, therefore introducing changes to the source code. The programming
style allows the programmer to carefully manage the workflow, but completely defeats the
advantages of the OpenMP programming model.

We are proposing extensions to the OpenMP programming model, which allow the automatic
generation of SPMD style code based on user directives. Our goal is to remove some of the
performance inhibiting limitations of OpenMP while preserving the ease of programming. In the
current work we are addressing the issue of work distribution in multiple dimensions and point-
to-point thread synchronization.

The rest of the paper is structured as follows. In Section 2 we discuss related work regarding
multidimensional parallelization and present our own approach in comparison. In Section 3 we
give a description of our prototype implementation. In Section 4 we present two case studies to
demonstrate the proposed concept and conclude in Section 5.

I

i I

,

I 2. Multidimensional Parallelism

The OpenMP standard allows the nesting of the OMP PAIZALLEL directive. According to the
standard, a new team of threads is created when an inner OMP PARALLEL directive is
encountered. The new team is joined at the inner OMP END PARALLEL. The OMP DO directive
cannot be nested without nesting the OMP PARALLEL directive.

- 2 -

At this point not many compilers support this type of directive nesting. For example, the SGI
compiler does not support nested OMP PARALLEL directives, but provides some support of
multidimensional work distribution. The SGI compiler accepts the NEST clause on the OMP DO
directive [lo]. The NEST clause requires at least two variables as arguments to identify indices
of subsequent DO-loops. The identified loops must be perfectly nested and no code is allowed
between the identified DO statements and the corresponding END DO statements. The NEST
clause on the OMP DO directive informs the compiler that the entire set of iterations across the
identified loops can be executed in parallel. The compiler can then linearize the execution of the
loop iteration and divide them among the available single level of threads.

An example of a research platform that supports true nested OpenMP parallelism is the OpenMP
NanosCompiler [3]. The OpenMP NanosCompiler accepts Fortran-77 code containing OpenMP
directives and generates plain Fortran-77 code with calls to the NthLib thread library [SI
currently implemented for the SGI Origin. In contrast to the SGI MP library, NthLib allows for
multilevel parallel execution such that inner parallel constructs are not being serialized. The
NanosCompiler programming model supports several extensions to the OpenMP standard to
allow the user to control the allocation of work to the participating threads. The NanosCompiler
extension to multilevel parallelization is based on the concept of thread groups. A group of
threads is composed of a subset of the total number of threads available in the team to run a
parallel construct. In a parallel construct, the programmer may define the number of groups and
the composition of each one. When a thread in the current team encounters a PARALLEL
construct defining groups, the thread creates a new team and it becomes its master thread. The
new team is composed of as many threads as the number of groups. The rest of the threads are
used to support the execution of nested parallel constructs. In other words, the definition of
groups establishes an allocation strategy for the inner levels of parallelism. To define groups of
threads, the NanosCompiler supports the GROUPS clause extension to the PARALLEL directive.
The NanosCompiler also provides the PRED/SUCC extensions [4] in order to allow point-to-
point synchronization between threads.

We propose the following extensions to OpenMP for support of multidimensional parallelism,
for short MOMP directives. We introduce two new directives, TMAP and MDO, for mapping a
team of threads to a grid of multiple dimensions and for distributing work in the multiple
dimensions. The concept is illustrated for a two-dimensional grid. It can easily be extended to
higher dimensions.

TMAP (n d i m , sfactorl, sfactor2)

Maps a team of threads to a grid of multiple dimensions. ndim is the dimension of the
mapped thread grid, currently 1 or 2; sfactorl and sfactor2 are the shape factors for
the grid, i.e. the ratio of the two factors is proportional to that of the grid sizes in each

- 3 -

dimension. For example, (2,1,1) defines a squared grid; (2,N,O) indicates that the number of
threads mapped to the first dimension should not exceed N. See Figure 1 for an illustration.

MDO (idim [, gplow, gphighl)

Binds or distributes a worksharing DO loop to the ‘ i d i m ’ dimension of the thread grid. The
optional parameters gplow and gphigh can be used to specify additional ghost iterations
to be assigned on the low and high ends of the bound loop. This is to mimic the ghost points
concept used in a message-passing program. For the (2,1,1) mapping in Figure 1, if loops K
and J are bound to idim=l and 2, respectively, threads 0,1,2,3 will be bound to the same
iterations of loop K, while threads 0,4,8,12 will be bound to the same iterations of loop J. By
default, threads are not synchronized at the end of an MDO loop, as opposite to the implicit
synchronization at the end of an OMP DO loop. This selection reflects closer to the SPMD
coding style. To enforce synchronization, the user needs to use explicit synchronization
directives. ‘ To support flexible synchronization among threads in the thread grid, we include two more

directives, TS IGNAL and TWAI T.

TSIGNAL (idir [, . .I)
Sends a signal to the direction ‘idir’: - 1 lower-neighbor in the first dimension, 1 higher-
neighbor in the first dimension, - 2 lower-neighbor in the second dimension, 2 higher-
neighbor in the second dimension (see Figure 1). Multiple directions can be listed.

TWAIT (idir [, . . . I)
I

I
Waits a signal from the direction ‘ idir’ : -1 lower-neighbor in the first
higher-neighbor in the first dimension, - 2 lower-neighbor in the second
higher-neighbor in the second dimension. Multiple directions can be listed.

idim=l

1
idim=2

dimension, 1
dimension, 2

(2,1,1) mapping

Figure 1: Examples of thread mapped grids with TMAP for 16 threads. The left (2,1,1) mapping
defines a squared shape, while the right (2,8,0) mapping limits the number of threads mapped to
the first dimension to 8, which then gives an 8x2 topology. The light shaded boxes indicate the
neighboring threads of a given thread (5 in the figure) corresponding to idir=- 1,1,-2,2.

-4-

TSIGNAL/TWAIT must always be used in a matching pair; else a deadlock will occur. We could
easily include constructs for signallwait of a particular thread if required.

A sample code using MOMP directives is given in Figure 2. The TMAP clause is added to the
beginning of a parallel region to define a 2-D thread grid. The first MDO distributes the work of
the K loop, while the second MDO distributes the work of the J loop. The MOMP extensions can
work seamlessly with most of the OpenMP directives.

Code with MOMP directives OpenMP with Nanos Extensions
! $OMP PARA-LLEL !$OMP PARALLEL GROUPS(NZ)
!$OMP& TMAP(2,NZ,O) !$OMP DO
!$OMP MDO(1) DO K=l,NZ

DO K=l,NZ !$OMP PARALLEL DO
!$OMP MDO(2) DO J=1, NY

DO J=l,NY do m o r e work ...
do m o r e work ... ENDDO

ENDDO !$OMP END PARALLEL DO
ENDDO ENDDO

!$OMP END PARALLEL !$OMP END PARALLEL

Serial code
DO K=l,NZ
ZETA = K*0.1
DO J=l,NY
do more work ...

ENDDO
ENDDO

OpenMP with SGI extensions

! $SGI+NEST ONTO (NZ , *)

!$OMP PARALLEL DO

DO K=l,NZ
DO J=l,NY

do m o r e work ...
ENDDO

ENDDO
!$OMP END PARALLEL DO

~~~ 

Code with MOMP directives . 

! $OMP PARALLEL TMAP (2, NZ , 0 ) 
!$OMP MDO(1) 

DO K=l,NZ 
ZETA = K"0.1 

!$OMP MDO(2) 
DO J=l,NY 

do more work ... 
ENDDO 

ENDDO 
!$OMP END PARALLEL 

- 5 -  



3. Prototype Impl-mentati n 

To illustrate the concept of using the MOMP directives described above for multidimensional 
parallelization, we implemented a prototype translator and the supporting runtime library. The 
translator simply translates all the MOMP directives into appropriate runtime calls and leaves the 
other OpenMP directives intact. The resulting code is a standard OpenMP code and can be 
compiled with any OpenMP compiler and linked with the MOMP runtime library. 

In Table 1 we summarize the translation of MOMP directives into the runtime functions for 
FORTRAN codes; the concept applies to C as well. The translation of TMAP, TSIGNAL and 
TWAIT is straightforward, simply mapping into the corresponding runtime functions. The MDO 
directive is translated into a call to momp - get - range that computes the new loop limit after 
the associated loop is distributed in the defined grid dimension, and the loop is then replaced 
with the new limit. For simplicity we only consider the block distribution which also simplifies 
the implementation of momp-t s ignal() and momp - twai t(). The ghost iterations are 
translated into the overlap of the iteration space between two neighboring threads. When no 
ghost iteration is involved, (gplow,gphigh)=(O,O) is used. 

- 
MOMP directive I Runtime function 

TMAP(ndim,sfactorl,sfactor2) call momp-create-map(ndim, 

MDO (idim, gplow, gphigh) 
& sfactorl, sfactor21 
call momp-get-range(idim, 

DO lvar=low,high,step & gplow, gphigh, low, high, 
& step,new-low,new-high) 

& step 
DO lvar=new-low,new-high, 

MDO (idim) call momp-get-range(idim, 

TSIGNAL(idir[, . ..I 

TWAIT (idir [ ,  . . . I 1 

& o , o /  . . .  ) 
call momp-tsignal (idir) 
[call momp-tsignal(. . - 1 1  
call momp-twait (idir) 
[call momp-twait ( .  . . ) 1 

In addition, an environment variable MOMP-SHAPE is used to control the grid shape externally. 
MOMP - SHAPE takes a value like “SlxS2,” which is equivalent to specifying s fac tor l=Sl  

and sfactor2=S2 to TMAP. This value overwrites the values given in TMAP. It allows a user 
to freely change the grid shape at runtime without recompiling the code. If SlxS2=N where N is 
the total number of threads, the shape “S1xS2” defines the current grid topology. 

- 6 -  



An example of the translation of the code given in Figure 2 is shown in Figure 4. The translated 
code is a standard OpenMl? code with a proper list of private variables for the new loop limits 
and can be compiled with any OpenMP compiler. 

Code with MOMP directives 
!$OMP PAPALLEL 
!$OMP& TMAP(2,NZ,O) 
! $OMP MDO (1) 

DO K=l,NZ 
ZETA = K"0.1 

!$OMP MDO(2) 
DO J=l,NY 

do more work ... 
ENDDO 

ENDDO 
!$OMP END PARALLEL 

Translated OpenMP code 
!$OMP PARALLEL PRIVATE(K-NLOW, 
!$OMP& K-NHIGH,J-NLOW,J-NHIGH) 

CALL MOMP - CREATE-MAP (2 , NZ , 0 ) 
CALL MOMP - GET-RANGE (1 I 0 , 0 I 1 , 

& NZ , 1 , K-NLOW, K-NHIGH) 
DO K=K-NLOW,K-"HIGH 
ZETA = K*0.1 
CALL MOMP-GET-RANGE (2 , 0 I 0 , 
1 , NY , 1 , J-NLOW , J-NHIGH ) 

do more work ... 

& 

DO J=J - NLOW, J-N?iIGH 

ENDDO 
ENDDO 

!$OMP END PARALLEL 

Figure 4: Translation of a sample MOW code to the standard OpenMP code with M O W  
runtime calls. 

4. Casestudy 

In this section we show examples for using our proposed MOMP directives. We will describe the 
usage of the directives and discuss the performance of the resulting code. All tests were run on 
an SGI Origin 3000 with 400MHz R12000 CPUs and 2GB local memory per node. We have 
parallelized two codes (BT and LU) from the NAS Parallel Benchmark suite [2]. We used the 
baseline implementation as described in [5]. In addition we have applied our extension to a full- 
scale cloud modeling code. 

4.1. The BT Benchmark 

BT is a simulated CFD application. It uses an implicit algorithm to solve the 3D compressible 
Navier-Stokes equations. The x, y, and z dimensions are decoupled by usage of an Alternating 
Direction Implicit (ADI) factorization method. The resulting systems are block-tridiagonal with a 
block size of 5x5. The systems are solved sequentially along each dimension. All of the nested 
parallel loops are at least triple nested. The structure of the loops is such that the two outer most 
loops can be parallelized and enclose a reasonably large amount of computational work. We 
applied the TMAP and MDO directives as shown in Figure 2 throughout the code. In Figure 5 we 
show timings obtained for the BT benchmark class A, which corresponds to the problem size of 
64 grid points in each dimension. We compare timings achieved for different numbers of threads 

- 7 -  



running in various topologies. We denote by n1 the first dimension of the thread topology. In our 
experiments nl is the total number of threads divided by the second dimension of the thread grid. 
For example, if we are running on 32 CPUs employing 32 threads, then the topology of 111x4 
corresponds to employing 8 threads on the first and 4 threads on the second dimension. 

The timings show that for more than 64 threads distributing the work in multiple dimensions can 
improves the performance significantly. The loop length resulting from 64 points does not 

work in two dimensions allows the exploitation of additional parallelism. The ratio of L2 cache 
misses vs. floating instructions per thread increases as more threads assigned in the second 
dimension due to the large stride memory access, which causes the increase in running time. But 
the positive impact of better workload balance is stronger than the negative impact of a lack of 

I provide enough iterations in one dimension to keep more than 64 threads busy. Distributing the 

I 
data locality in the run th 1 

60 

50 

40 

30 

20 

10 
9 
8 

16 32 64 128 

Number of CPUs 

Figure 5: MOMP timing comparison for various numbers of threads running in different 
topologies. The first dimension nl corresponds to the number of CPUs divided by the second 
topology dimension. 

In Figure 6 we compare timings achieved for different thread topologies for the MOMP version 
with timings obtained for the nested OpenMP version using the NanosCompiler. For the 
NanosCompiler we use the GROUPS clause extension as shown in Figure 3. The timings for the 
MOMP version seam to be slightly better than for the Nanos version, but not significantly. The 
extra barrier synchronization points at the end of inner parallel regions do not introduce 
considerable overhead to the NanosCompiler generated code, which is due to the very efficient 
NthLib thread library. We also noticed that the thread scheduling applied by the NanosCompiler 
yields a somewhat better workload balance than our approach. This indicates that additional 
performance might be gained for MOMP with an optimized runtime library. 

- 8 -  



BT Class A on 100 CPUs SGI Origin 3000 

16 

14 

12 
fn 

0 

fn fl Nanos 
g 10 

.- r 8  

r - 4  

2 

0 

.- E 6  

100x1 50x2 25x4 best 

Thread topology 

Figure 6: Time comparisons between Nanos and MOMP for different thread configurations. 
The columns in category best indicate the best time over all tested topologies. 

The SGI NEST clause is not applicable to some of the time consuming loops in the BT 
benchmark because they are not tightly nested. More details on that can be found in [5]. 

4.2. The LU Benchmark 

The LU application benchmark is a simulated CFD application that uses the symmetric 
successive over-relaxation (SSOR) method to solve a seven band block-diagonal system, 
resulting from finite-difference discretization of the 3D compressible Navier-S tokes equations by 
splitting it into block lower and block upper triangular systems. All of the loops involved carry 
data dependences that prevent straightforward parallelization. There is, however, the possibility 
to exploit a certain level of parallelism by using software pipelining which requires explicit 
synchronization of individual threads. We use the MOMP TMAP and MDO directives to distribute 
the work in multiple dimensions. Distributing the work in multiple dimensions requires a two- 
dimensional thread pipeline. We use the MOMP TWAIT and TSIGNAL directives to set up 
threaded pipeline execution in multiple dimensions. An example of the source code for the 2D 
pipeline implemented using the MOMP directives is shown in Figure 7 

At this point we note that a two-dimensional pipeline involving nested OpenMP parallel regions 
runs into ;he problem that the inner parallel region imposes an extra barrier synchronization point 
which inhibits the 2D pipeline. 

- 9 -  



Code with MOMP directives 
! $OMP PAFLULEL TMAP ( 2 ,  PjZ , 0 ) 

DO K = 2 , N Z  
!$OMP WAIT(-1,-2) 
!$OMP MDO(1) 

DO J=2, NY 
!$OMP M D O ( 2 )  

DO I=2,NX 
V ( I , J , K )  = V ( I , J , K ) + V ( I - l , J , K ) +  

& V ( 1 ,  J - l , K ) + V ( I ,  J , K - l )  
- . .  

ENDDO 
ENDDO 

$OMP SIGNAL(1,2) 
ENDDO 

$OMP END PARALLEL 

Figure 7: Code example for the implementation of a 2D thread pipeline using MOM directives. 

We used the Paraver [ 121 performance analysis system to show the effect of the 2D pipeline on 
the workflow of the threads. In Figure 8 we show the time line view of the useful thread time 
during the forward substitution phase of LU for a 16 CPU run. Dark shades indicate time the 
threads spend in computation, light shades indicate time spent in synchronization or other 
OpenMP introduced overhead. The left image shows a 16x1 thread topology, corresponding to a 
1D pipeline. The right image shows a 4x4 topology corresponding to a 2D pipeline. The use of 
the 2D pipeline decreases a pipeline startup time for the computations. 

Figure 8: Time line views of the thread workflow during the forward substitution phase in LU 
running on 16 threads. Dark shading indicates time spent in computation, light shading indicates 
time spent in synchronization. The left images shows a ID thread pipeline, the right image 
shows a 2D thread pipeline. The 2D pipeline decreases the pipeline startup time. 

-10 -  



% 
40 
30 

20 

10 

6 -  
5 -  
4 -  
3 -  

2 -  

1 -  

Just like in the case of BT, the LU benchmark provides only work for 62 threads on the outer 
loop level. Even though we were able to achieve a 2D pipelined thread execution, we did not 
gain any significant speedup by using extra threads and exploiting the inner loop for additional 
parallelism. Timings for LU benchmark class A problem are shown in Figure 9. A large increase 
in L2 cache misses for some of the threads lead to a very imbalanced workflow which decreased 
the performance. This is clearly indicated in Figure 10 where the effect of multidimensional 
parallelism in the LU benchmark on the value of various hardware counters is summarized. 

- 
- 
- 
- 

1 I I I I 
70 
60 

50 

40 

30 

(I) 
0 
a, 

E" 
c- 20 

10 
16 32 64 128 

Number of CPUs 

Figure 9: MOMP timings for various numbers of threads running in various topologies for LU 
benchmark class A. See Figure 5 for a note on the topology. 

L I I I I I I 

h 

0 
a, cn 
v 

2 
i= 

fin I- 

Cycle L1 miss L2miss TLBmiss L2invalid 

Figure 10: Effect of 2D work distribution on hardware counters for the LU benchmark. 

- 11 - 



4.3. The Cloud Modeling Code 

The Goddard Cumulus Ensemble (GCE) code developed at the NASA Goddard Space Flight 
Center [13] is used for modeling the evolution of clouds and cloud systems under large-scale 
thermodynamic forces. The 3-dimensionsal version of this code, GCEM3D, was previously 
parallelized [6] using the standard OpenMP directives. The parallelization was performed on the 
outer loops (in many cases the vertical K dimension) to achieve coarse parallel granularity and 
little OpenMP overhead. However, due to the size limitation of the K dimension, the code does 
not scale beyond 32 CPUs even though the horizontal sizes are much larger (see [6]). 

Use of the M O W  directives is a natural way to exploit parallelism in the horizontal dimension 
of the GCEM3D code. We use TMAP to define a 2-D thread mapping and MDO to bind the K 
loops to the first dimension of the thread grid and the J loops to the second dimension. The code 
requires the use of the ghost iterations in the MDO directives, as shown in Figure 11. The “DO 

2 0 0 J” loop computes additional values far the XY1 array in the low e2d so that XY 1 ( I , J- 1 ) 
can be used in the next J loop. Since the XY1 array is declared as private, the use of 
“MDO (2 , 1 , 0 ) ” ensures that each thread performs one extra calculation at the low end of the 
assigned iteration so that the XY 1 ( I , J- 1 ) value is available in the next J loop for each thread. 

I 

!$OMP PARALLEL PRiVATE(I,J,K, JM,XYl) TMAP(2,KLES-1,0) 
!$OMP MDO(1) 

DO 100 K=2, KLES 
!$OMP MD0(2,1,0) 

DO 2 0 0  J=l,JLES 
DO 2 0 0  i=2,ILES 
XY1 (I, J) =. . . 

200 CONTINUE 
! $OMP MDO (2) 

DO 3 0 0  J=Z,JLES 
JM=J-1 
DO 300 i=2,ILES 
U1( I , J, K) =U1( I, J, K) i- (XY1( I, JM) -XY1 ( I, J) 

300 CONTINUE 
. . .  

100 CONTINUE 
!$OMP END PARALLEL 

Figure 11: Sample GCEM3D code that uses the ghost iteration feature of the MDO directive. 

To test the effect of the M O W  directives, we applied them to the most time consuming routine 
‘fadvuw’ in the GCEM3D code. The parallel code was run on 32 and 64 CPUs for a problem 
size of 258x258~34. The timing results are summarized in Table 2. As one can see, the single 
dimension parallelization (as indicated by 32x1 and 64x1) only improves the timing slightly 



8 

I 

CPUs 1 32 

Topology 1 32x1 

Time (secs) 1 59.3 

- Ratio 

from 32 to 64 CPUs; the multidimensional parallelization with the M O W  directives reduces the 
timing on 64 CPUs from 51.1 seconds to 35.4 seconds. 

64 

64x 1 32x2 

51.1 35.4 

1.16 1.68 

5.  Conclusion 

We have proposed extensions to the current OpenMP programming model which allow the user 
to easily distribute the work in multiple dimensions within nested DO loops and synchronize the 
work flow between threads. The purpose is to exploit parallelism in multiple dimensions within a 
nest of loops. We have demonstrated the feasibility of our approach in several case studies. The 
advantage of the MOMP directives proposed in this work is that they are simple and clean. They 
can be implemented within the current OpenMP programming model and do not require changes 
to the OpeIliMP standard. The proposed work distribution directives support the automatic 
generation of SPMD style parallelization of loop. They do not impose restrictions on the 
structure of the loop nest, such as beins tightly nested, nor do they require the nesting of parallel 
regions. Using the MOMP directives it is trivial to create a 2-D pipeline in LU, which would be 
difficult when using nested parallel regions. 

Our case studies also demonstrated that distributing the work in multiple dimensions introduces 
disadvantages: The data is accessed employing large strides which can lead to severe cache 
problems. This can be seen in the case of the LU benchmark. The lack of data locality is always 
an issue with the shared-addressing programming model on cache-based systems. This issue 
needs to be addressed in future work, for example by automatically restructuring the code for 
cache optimization. Other possible enhancements to the MOMP directives include “MBARRI EX” 
for barrier synchronization and “MREDUCTION” for reduction on a selected grid dimension. 

Acknowledgements 

This work was partially supported by NASA contract DTTS59-99-D-O0437/A618 12D with 
Computer Sciences Corporation. 

- 13 - 



Reference 
[l] E. Ayguade, X. iVartorell, J. Labarta, M. Gonzalez and N. Navarro, “Exploiting Mt?!tiple 

Levels of Parallelism in OpenMP: A Case Study,” Proc. Of the 1999 International 
Conference on Parallel Processing, Ajzu, Japan, September 1999. 

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, T h e  NAS 
Parallel Benchmarks 2.0,” RNR-95-020, NASA Ames Research Center, 1995. NPB2.3, 
h ttp : //www .nas. nasa. eov/S oftw are/NPB/. 

[3] M. Gonzalez, E. AyguadC, X. Martorell, J. Labarta, N. Navarro and J. Oliver. 
“NanosCompiler: Supporting Flexible Multilevel Parallelism in OpenMP.” Concurrency: 
Practice and Experience. Special issue on OpenMP. vol. 12, no. 12. pp. 1205-1218. October 
2000. 

[4] M. Gonzalez, E. AyguadC, X. Martorell and J. Labarta. “Defining and Supporting Pipelined 
Executions in OpenMP.” 2”d International Workshop on OpenMP Applications and Tools. 
July 2001. 

[SI H. Jin, M. Frumkin, and J. Yan, “The OpenMP Implementations of NAS Parallel 
Benchmarks and Its Performance,” NAS Technical Report NAS-99-011, 1999. 

[6] H. Jin, G. Jost, D. Johnson, and W-K. Tao, “Experience on the Parallelization of a Cloud 
Modeling Code Using Computer-Aided Tools,” NAS Technical Report NAS-03-006, NASA 
Ames Research Center, March 2003. 

[7] H. Jin, G. Jost, J. Yan, E. Ayguade‘, M. Gonzalez, X. Martorell, “Automatic Multilevel 
Parallelization Using OpenMP,” 3rd European Workshop on OpenMP (EWOMPOI), 
Barcelona, Spain, September 2001. 

[8] G. Jost, H. Jin, J. Labarta, J. Gimenez and J, Caubet, “Performance Analysis of Multi-level 
Parallel Programs on Shared Memory Computer Architectures,” Proceedings of the 1 7fh 
International Parallel and Distributed Processing Symposium (IPDPS03), Nice, France, April 
2003. 

[9] X. Martorell, E. Ayguadk, N. Navarro, J. Corbalan, 1%. Gonzalez and J. Labarta. 
“Thread Forkijoin Techniques for Multi-level Parallelism Exploitation in NUMA 

Multiprocessors.” 1 3th International Conference on Supercomputing (ICS799), Rhodes 
(Greece). pp. 294-301. June 1999. 

[lo] MlPSPro 7 Fortran 90 Commands and Directives Reference Manual 007-3696-03. 
[ 111 OpenMP FortradC Application Program Interface, http://www.openmp.or,o/. 
[ 121 Paraver, http://www.cepba.upc.es/paraver/. 
[ 131 W.-K. Tao, “Goddard Cumulus Ensemble (GCE) Model: Application for Understanding 

Precipitation Processes, AMs Meteorological Monographs,” Symposium on Cloud Systems, 
Hurricanes and TRMM, 2002. 

. 

- 1 4 -  


